American Chemical Society
Browse
nl5b00626_si_001.pdf (363.08 kB)

Optical Investigation of Monolayer and Bulk Tungsten Diselenide (WSe2) in High Magnetic Fields

Download (363.08 kB)
journal contribution
posted on 2015-07-08, 00:00 authored by A. A. Mitioglu, P. Plochocka, Á. Granados del Aguila, P. C. M. Christianen, G. Deligeorgis, S. Anghel, L. Kulyuk, D. K. Maude
Optical spectroscopy in high magnetic fields B ≤ 65 T is used to reveal the very different nature of carriers in monolayer and bulk transition metal dichalcogenides. In monolayer WSe2, the exciton emission shifts linearly with the magnetic field and exhibits a splitting that originates from the magnetic field induced valley splitting. The monolayer data can be described using a single particle picture with a Dirac-like Hamiltonian for massive Dirac Fermions, with an additional term to phenomenologically include the valley splitting. In contrast, in bulk WSe2 where the inversion symmetry is restored, transmission measurements show a distinctly excitonic behavior with absorption to the 1s and 2s states. Magnetic field induces a spin splitting together with a small diamagnetic shift and cyclotron like behavior at high fields, which is best described within the hydrogen model.

History