Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration

Interfacial characteristics play an important role in infection prevention and osteointegration of artificial bone implants. In this work, both Ag nanoparticles (AgNPs) and ZnO NPs are incorporated into hydroxyapatite (HA) nanopowders and deposited onto Ti6Al4V (Ti6) implants by laser cladding. The composite coatings possess a hierarchical surface structure with homogeneous distributions of Ag and ZnO. The Ag and ZnO NPs that are immobilized by laser cladding ensure long-term and gradual release of Ag and Zn ions at low cumulative concentrations of 36.2 and 56.4 μg/L after immersion for 21 days. A large concentration of Ag released initially increases the cytotoxicity but the large initial ZnO content enhances the cell viability and osteogenetic ability. The nano Ag/ZnO-embedded HA coating (Ag/ZnO/HA = 7:3:90 wt %, namely Ag7ZnO3HA) exhibits optimal antibacterial efficacy and osteogenetic capability, as exemplified by the broad spectrum antibacterial efficacy of 96.5 and 85.8% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, together with enhanced osteoinductivity with higher alkaline phosphatase (ALP) activity of 134.60 U/g protein compared to 70.79 U/g protein for the untreated implants after culturing for 7 days. The rabbit femoral implant model further confirms that the optimized composite coating accelerates the formation of new bone tissues indicating 87.15% of the newly formed bone area and osteointegration showing 83.75% of the bone–implant contact area even in the presence of injected S. aureus. The laser-cladded Ag7ZnO3HA composite coatings are promising metallic implants with excellent intrinsic antibacterial activity and osteointegration ability.