American Chemical Society
Browse
nn300735s_si_001.pdf (909.01 kB)

Multilevel Resistive Switching in Planar Graphene/SiO2 Nanogap Structures

Download (909.01 kB)
journal contribution
posted on 2012-05-22, 00:00 authored by Congli He, Zhiwen Shi, Lianchang Zhang, Wei Yang, Rong Yang, Dongxia Shi, Guangyu Zhang
We report a planar graphene/SiO2 nanogap structure for multilevel resistive switching. Nanosized gaps created on a SiO2 substrate by electrical breakdown of nanographene electrodes were used as channels for resistive switching. Two-terminal devices exhibited excellent memory characteristics with good endurance up to 104 cycles, long retention time more than 105 s, and fast switching speed down to 500 ns. At least five conduction states with reliability and reproducibility were demonstrated in these memory devices. The mechanism of the resistance switching effect was attributed to a reversible thermal-assisted reduction and oxidation process that occurred at the breakdown region of the SiO2 substrate. In addition, the uniform and wafer-size nanographene films with controlled layer thickness and electrical resistivity were grown directly on SiO2 substrates for scalable device fabrications, making it attractive for developing high-density and low-cost nonvolatile memories.

History