American Chemical Society
Browse
ab9b01332_si_002.mp4 (4.39 MB)

Multifunctional Magnetic–Fluorescent Nanoparticle: Fabrication, Bioimaging, and Potential Antibacterial Applications

Download (4.39 MB)
media
posted on 2019-11-19, 08:29 authored by Yan Fang, Cuili Xing, Shixia Zhan, Meng Zhao, Mingxue Li, Hongling Liu, Chunzhang Wang
Magnetic–fluorescent nanoparticles integrating imaging and therapeutic capabilities have unparalleled advantages in the biomedical applications. Apart from the dual ability of unique biomolecular fluorescent recognition and magnetic modes, the nanoparticle also endows combined effective therapies with high physiological stability, long-term imaging, rapid response time, and excellent circulation ability. Herein, we developed a carboxyl-functionalized magnetic nanoparticle that was further functionalized by polydopamine (PDA) and Schiff base ligand (3-aminopyridine-2-carboxaldehyde N(4)-methylthiosemicarbazone, HL) to form multilayered coating single nanoparticles (Fe3O4@PDA@HL). Our work showed that the aggregation-induced emission (AIE) effect could be produced by embedding In3+ into the Fe3O4@PDA@HL nanostructure, which offered a new opportunity for utilization as a fluorescent detection and therapeutic platform. Cellular fluorescent imaging experiments provided bacterial cell biodistribution, demonstrating their excellent luminescent performance, magnetic aggregation, and separation capability. We simultaneously confirmed that the synergistic antibacterial effect was closely related to both Fe3O4@PDA@HL and In3+, leading to the disruption of membrane integrity and the leakage of intracellular components, thus inducing bacterial death. This approach presented in our work could promote the development of future bioimaging and clinical therapy applications.

History