American Chemical Society
Browse
ac502214z_si_002.avi (9.6 MB)

Methylsorb: A Simple Method for Quantifying DNA Methylation Using DNA–Gold Affinity Interactions

Download (9.6 MB)
media
posted on 2014-10-21, 00:00 authored by Abu Ali Ibn Sina, Laura G. Carrascosa, Ramkumar Palanisamy, Sakandar Rauf, Muhammad J. A. Shiddiky, Matt Trau
The analysis of DNA methylation is becoming increasingly important both in the clinic and also as a research tool to unravel key epigenetic molecular mechanisms in biology. Current methodologies for the quantification of regional DNA methylation (i.e., the average methylation over a region of DNA in the genome) are largely affected by comprehensive DNA sequencing methodologies which tend to be expensive, tedious, and time-consuming for many applications. Herein, we report an alternative DNA methylation detection method referred to as “Methylsorb”, which is based on the inherent affinity of DNA bases to the gold surface (i.e., the trend of the affinity interactions is adenine > cytosine ≥ guanine > thymine). Since the degree of gold–DNA affinity interaction is highly sequence dependent, it provides a new capability to detect DNA methylation by simply monitoring the relative adsorption of bisulfite treated DNA sequences onto a gold chip. Because the selective physical adsorption of DNA fragments to gold enable a direct read-out of regional DNA methylation, the current requirement for DNA sequencing is obviated. To demonstrate the utility of this method, we present data on the regional methylation status of two CpG clusters located in the EN1 and MIR200B genes in MCF7 and MDA-MB-231 cells. The methylation status of these regions was obtained from the change in relative mass on gold surface with respect to relative adsorption of an unmethylated DNA source and this was detected using surface plasmon resonance (SPR) in a label-free and real-time manner. We anticipate that the simplicity of this method, combined with the high level of accuracy for identifying the methylation status of cytosines in DNA, could find broad application in biology and diagnostics.

History