Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids

In the present work, experimental density measurements are reported along with the derived thermodynamic properties, such as the isothermal compressibility (κT), the isobaric expansivity (αp), and the thermal pressure coefficient (γv) for imidazolium-based ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium methylsulfate [C2mim][MeSO4], 1-ethyl-3-methylimidazolium ethylsulfate [C2mim][EtSO4], 1,3-diethylimidazolium bis(trifluoromethylsulfonyl)imide [C2eim][Tf2N], and 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C10mim][Tf2N] in the pressure (0.10 < P/MPa < 35.00) and temperature (293.15 < T/K < 393.15) domains. It is shown that experimental densities are in good agreement with the predicted densities obtained by the Gardas and Coutinho method and the correlation using the Tait equation and Sanchez−Lacombe equation of state.