American Chemical Society
Browse
nn9b10196_si_004.pdf (2.33 MB)

Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures

Download (2.33 MB)
journal contribution
posted on 2020-03-17, 20:45 authored by Yu-Chuan Lin, Chenze Liu, Yiling Yu, Eva Zarkadoula, Mina Yoon, Alexander A. Puretzky, Liangbo Liang, Xiangru Kong, Yiyi Gu, Alex Strasser, Harry M. Meyer, Matthias Lorenz, Matthew F. Chisholm, Ilia N. Ivanov, Christopher M. Rouleau, Gerd Duscher, Kai Xiao, David B. Geohegan
Atomically thin two-dimensional (2D) materials face significant energy barriers for synthesis and processing into functional metastable phases such as Janus structures. Here, the controllable implantation of hyperthermal species from pulsed laser deposition (PLD) plasmas is introduced as a top-down method to compositionally engineer 2D monolayers. The kinetic energies of Se clusters impinging on suspended monolayer WS2 crystals were controlled in the <10 eV/atom range with in situ plasma diagnostics to determine the thresholds for selective top layer replacement of sulfur by selenium for the formation of high quality WSSe Janus monolayers at low (300 °C) temperatures and bottom layer replacement for complete conversion to WSe2. Atomic-resolution electron microscopy and spectroscopy in tilted geometry confirm the WSSe Janus monolayer. Molecular dynamics simulations reveal that Se clusters implant to form disordered metastable alloy regions, which then recrystallize to form highly ordered structures, demonstrating low-energy implantation by PLD for the synthesis of 2D Janus layers and alloys of variable composition.

History