Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis

ConspectusThe development of renewable energy storage and conversion has been greatly promoted by the achievements in platinum (Pt)-based catalysts, which possess remarkable catalytic performance. However, the high cost and limited resources of Pt have hindered the practical applications and thus stimulated extensive efforts to achieve maximized catalytic performance with minimized Pt content. Low dimensional Pt-based bimetallic nanomaterials (such as nanoplates and nanowires) hold enormous potential to realize this target owing to their special atomic arrangement and electronic structures. Recent achievements reveal that strain engineering (e.g., the compressive or tensile strain existing on the Pt skin), surface engineering (e.g., high-index facets, Pt-rich surface, and highly open structures), and interface engineering (e.g., composition-segregated nanostructures) for such nanomaterials can readily lead to electronic modification, more active sites, and strong synergistic effect, thus opening up new avenues toward greatly enhanced catalytic performance.In this Account, we focus on recent advances in low dimensional Pt-based bimetallic nanomaterials as promising catalysts with high activity, long-term stability, and enhanced selectivity for both electrocatalysis and heterogeneous reactions. We begin by illustrating the important role of several strategies on optimizing the catalytic performance: (1) regulated electronic structure by strain effect, (2) increased active sites by surface modification, and (3) the optimized synergistic effect by interfacial engineering. First of all, a difference in atomic bonding strength can result in compressive or tensile force, leading to downshift or upshift of the d-band center. Such effects can be significantly amplified in low-dimensionally confined nanostructures, producing optimized bonding strength for improved catalysis. Furthermore, a high density of high-index facets and a Pt-rich surface in shape-controlled nanostructures based on surface engineering provide further enhancement due to the increased Pt atom utilization and optimal adsorption energy. Finally, interfacial engineering of low dimensional Pt-based bimetallic nanomaterials with high composition-segregation can facilitate the catalytic process due to a strong synergetic effect, which effectively tunes the electronic structure, modifies the coordination environment, and prevents catalysts from serious aggregation. The rational design of low dimensional Pt-based bimetallic nanomaterials with superior catalytic properties based on strain, surface, and interface engineering could help realize enhanced catalysis, gain deep understanding of the structure–performance relationship, and expand access to Pt-based materials for general communities of materials science, chemical engineering, and catalysis in renewable energy research fields.