American Chemical Society
Browse
ic0608501_si_002.pdf (138.47 kB)

Lanthanide Triple-Stranded Helicates:  Controlling the Yield of the Heterobimetallic Species

Download (138.47 kB)
journal contribution
posted on 2006-09-18, 00:00 authored by Thomas B. Jensen, Rosario Scopelliti, Jean-Claude G. Bünzli
Two unsymmetrical ditopic hexadentate ligands designed for the simultaneous recognition of two different trivalent lanthanide ions have been synthesized, LAB2 and LAB3, where A represents a tridentate benzimidazole-pyridine-benzimidazole coordination unit, B2 a diethylamine-substituted benzimidazole-pyridine-carboxamide one, and B3 a chlorine-substituted benzimidazole-pyridine-carboxamide moiety. Under stoichiometric 2:3 (Ln/L) conditions, these ligands self-assemble with lanthanide ions to yield triple-stranded bimetallic helicates. The crystal structures of four helicates with LAB3 of composition [LnLn‘(LAB3)3](ClO4)6·solv (CeCe, PrPr, PrLu, NdLu) show the metal ions embedded into a helical structure with a pitch of about 13.2−13.4 Å. The metal ions lie at a distance of 9.1−9.2 Å and are nine-coordinated by the three ligand strands, which are oriented in a HHH (head−head−head) fashion, where all ligand strands are oriented in the same direction. In the presence of a pair of different lanthanide ions in acetonitrile solution, the ligand LAB3 shows selectivity and gives high yields of heterobimetallic complexes. LAB2 displays less selectivity, and this is shown to be directly related to the tendency of this ligand to form high yields of HHT (head−head−tail) isomer. A fine-tuning of the HHH ⇆ HHT equilibrium and of the selectivity for heteropairs of LnIII ions is therefore at hand.

History