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1. Experimental section  
Materials. Ammonium chloride was purchased from Damao Chemical Reagent Factory. Nickle 
chloride was purchased from Sinopharm Chemical Reagent Co., Ltd. Cobalt chloride was purchased 
from Tianjin Standard Technology Co., Ltd. Ammonium carbonate was purchased from Sinopharm 
Chemical Reagent Co., Ltd. Nickel foam was purchased from MTI. Potassium hydroxide was 
purchased from Sinopharm Chemical Reagent Co., Ltd. Commercial Pt/C catalyst (20% Pt on Vulcan 
XC-72) was purchased from Premetek. All chemicals were used as received without any further 
purification. Water deionized was used in all experiments. 
 
Synthesis. The Ni/Co2N catalysts were prepared by a facile template-free cathodic electrodeposition 
of porous Ni and Co microsphere arrays on nickel foam, followed by low-temperature ammonium 
carbonate treatment. Typically, the electrodeposition of 3D porous Ni and Co microspheres on nickel 
foam (NiCo) was performed in a standard two-electrode glass cell at room temperature with an 
electrolyte consisting of 2.0 M NH4Cl and 0.1 M NiCl2 and CoCl2. A piece of commercial nickel foam 
with a size of 0.5 cm by 0.5 cm was used as the working electrode and a Pt wire as the counter 
electrode. The electrodeposition was carried out at a constant current density of −1.0 A cm−2 for 500 s 
to obtain NiCo samples. Subsequently, the resulting NiCo was placed at the center of a tube furnace, 
and 4.2 g of (NH4)2CO3 was placed at the upstream side and near to NiCo. After it was flushed with Ar 
gas, the center of the furnace was quickly elevated to the reaction temperature of 420 ℃ with a 
ramping rate of 10 ℃ min−1 and kept at 420 ℃ for 0.5 h. After the system was cooled to room 
temperature, the final product denoted as Ni/Co2N was obtained.   
 
Characterization. Scanning electron microscopy (SEM) measurements were collected on a Hitachi 
SU8220. X-ray diffraction (XRD) patterns were obtained on a Rigaku MinifexII Desktop X-ray 
diffractometer. The X-ray photoelectron spectroscopy analyses were performed using a Kratos Axis 
Ultra instrument (Kratos Analytical Ltd.) at the Shaanxi Normal University. High Resolution 
Transmission Electron Microscopy (HR-TEM) measurements were collected on a JEM-2100. 
 
Electrochemical Measurements. Electrochemical measurements were performed by a computer 
controlled PGSTAT302N electrochemical workstation with a three-electrode cell system and a scan 
rate of 5 mV s−1. The resulting NiCo, Pt/NF, Ni/Co2N or NF were used as the working electrode, a 
SCE electrode as the reference electrode, and a Pt wire as the counter electrode. The electrolyte for 
HER and OER was 1.0 M KOH. The electrolyte for HOR was 0.1 M KOH. All potentials reported 
herein are quoted with respect to the reversible hydrogen electrode (RHE) through RHE calibration. 
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For overall water splitting tests, the Ni/Co2N was used as both an anode and a cathode electrode. The 
potential scan range was from 0 to 2.1 V. iR (current times internal resistance) compensation was 
applied in all the electrochemical experiments to account for the voltage drop between the reference 
and working electrodes using Nova 2.1 Data Acquisition Software. Electrochemical double layer 
capacitance (Cdl) of the resulting electrocatalysts was evaluated by using cyclic voltammetry in a 
non-Faradaic region at different scan rates of 10, 20, 30, 40, and 50 mV s−1. From a plot of the 
difference between the anodic and cathodic current densities at the middle potential versus scan rate, 
the resulting linear slope is twice the Cdl value. 
 

For HOR tests, the steady-state measurements were conducted to obtain the polarization curves 
instead of LSV or CV methods to minimize the capacitive current background. The multi-step CA was 
conducted at a potential window from −0.05 to 0.1 V vs. RHE with a 5 mV interval for every 60 s. 
The stable anodic current recorded at 60 s under each potential was used to plot the steady-state 
polarization curves for HOR.  
 
2. Computational Details 
Density functional theory (DFT) calculations were performed using the Vienna Ab Initio Simulation 
Package (VASP). Exchange-correlation energies were determined by using the 
Perdew–Burke–Ernzerhof (PBE) model of generalized gradient approximation (GGA). The Projector 
Augmented-Wave (PAW) method with a plane wave cut-off energy of 450 eV was used for total 
energy calculations. The convergence thresholds for energy and force were set as 10-4 eV and 0.04 
eV/Å, respectively, and the Brillouin zones were sampled by the Monkhorst−Pack k-point meshes. 
The surface of Ni (1-10) and Co2N(100) was modeled using a 2 × 1 surface slab cell with a vacuum of 
10 Å. For interface models, a 10 Å vacuum slab was used. Once the slab models were optimized all 
subsequent calculations were performed with the bottom four layers fixed. 
 
A typical descriptor of the rate of the overall reaction is the adsorption free energy of H and expressed 
as follows: 
 
ΔGH*=ΔEH+ΔEZPE-TΔSH 

 
Where ΔEZPE is the difference in zero point energy between the adsorbed and the gaseous H, ΔSH is 

the corresponding change of entropy, and ΔEH is the hydrogen chemi-sorptions energy which is 
computed as follows: ΔEH = E(surface +H)-E(surface)+1/2 E(H2). Where E(surface +H), E(surface), 
E(H2) are energies of the surface with adsorbed hydrogen atom, clean surface and molecular hydrogen, 
respectively. ΔEZPE can be obtained by frequency analysis followed by geometry optimization. ΔSH 
can be estimated by -1/2ΔSH2 assuming the vibration entropy of the adsorbate is small, where ΔSH2 is 
the entropy of H2. 
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Figure S1. a-d SEM images of NiCo under different magnifications (a:500µm; b:300µm; c:10µm; 
d:2µm). 
 
 
 

 

Figure S2. SEM images for a total of Co, Ni, and N elemental mapping, Co, Ni, and N elemental 
mappings in Ni/Co2N. 
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Figure S3. EDX spectra of NiCo (a) and Ni/Co2N (b).  
 
 
 

 
Figure S4. XRD patterns of Ni/Co2N and NiCo within fine angles. 
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Figure S5. iR-corrected polarization curves of Ni/Co2N and Pt/NF (Pt/C: 0.5 mg cm−2) in 1.0 M 
KOH. 
 
 
 

 

Figure S6. iR-corrected polarization curves of Ni/Co2N synthesized at different temperatures for 0.5 h. 
The polarization curves were collected in 1.0 M KOH. 
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Figure S7. iR-corrected polarization curves of Ni/Co2N with different Ni/Co molar ratios synthesized 
at 350oC for 0.5 h. The polarization curves were collected in 1.0 M KOH. 
 

 

Figure S8. Electrochemically active surface area (ECSA) measurements. CV curves of Ni/Co2N (a) 
and NiCo (b) collected at various scan rates ranging from 10 to 50 mV s-1 in CH3CN with 0.15 M 
KPF6. c) The linear fitting of scan rate versus ∆J (the difference between the anodic and cathodic 
current densities at open circuit potential). 
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Figure S9. XPS spectra of Co 2p, Ni 2p, and N 1s for Ni/Co2N before and after HER electrocatalysis. 

 
 

 
Figure S10. SEM images of for Ni/Co2N after HER electrocatalysis. 
 
 



S-9 
 

 

 
Figure S11. Elemental mapping images of for Ni/Co2N after HER electrocatalysis. 
 
 
 

 

Figure S12. Tafel plots of Ni/Co2N and NiCo in 1.0 M KOH. 
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Figure S13. Steady-state polarization curves of Ni/Co2N at different temperatures in H2-saturated 0.1 
M KOH (pH=13). 
 
 

 

Figure S14. Steady-state polarization curves of Ni/Co2N and Co2N in H2-saturated 0.1 M KOH 
(pH=13). 
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Figure S15. XPS spectra of Co 2p, Ni 2p, and N 1s for Ni/Co2N before and after HOR 
electrocatalysis. 

 
 
 

 
Figure S16. SEM images of for Ni/Co2N after HOR electrocatalysis. 
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Figure S17. Elemental mapping images of for Ni/Co2N after HOR electrocatalysis. 
 
 

 

 

Figure S18. iR-corrected polarization curves of Ni/Co2N with different Ni/Co molar ratios 
synthesized at 350oC for 0.5 h. The polarization curves were collected in 1.0 M KOH. 
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Figure S19. iR-corrected polarization curves of Ni/Co2N and NiCo in 1.0 M KOH (pH=14). 
 
 
 

 

Figure S20. iR-corrected polarization curves of Ni/Co2N synthesized at different temperatures for 0.5 
h. The polarization curves were collected in 1.0 M KOH (pH=14). 
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Figure S21. Chronopotentiometric curves of Ni/Co2N at 10 and 100 mA cm-2 in 1.0 M KOH (pH=14). 
 
 
 

 

Figure S22. Nyquist plots of Ni/Co2N and NiCo measured at 1.567 V vs. RHE in 1.0 M KOH. 
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Figure S23. Comparison of the OER performance for Ni/Co2N with those reported in the literature. 

 
 
 

 
Figure S24. Structure of Ni/Co2N interface (side view). 
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Figure S25. Adsorption structures of hydrogen onto Ni/Co2N_Ni. (a) side view and (b) top view. 
 
 
 

 
Figure S26. Adsorption structures of hydrogen onto Ni/Co2N_Co. (a) side view and (b) top view.  
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Figure S27. Adsorption structures of hydrogen onto Ni/Co2N_N. (a) side view and (b) Top view. 
 
 
 

 
Figure S28. Adsorption structures of hydrogen onto Co2N. (a) side view and (b) top view. 
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Figure S29. Adsorption structures of hydrogen onto Ni. (a) side view and (b) top view. 
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Table S1 Comparison of electrocatalytic HER activity of various nonprecious catalysts in 1.0 M KOH 
electrolyte with those reported in the literature.  

Catalysts J (mA cm-2) η (mV) Reference 
Ni/Co2N 10 -16.2 This work 

Ni2P/Ni/NF 
 

10 
20 

-98 
-120 

Ref 1 

MoCx/C 10 -151 Ref 2 
CoOx@CN 10 -232 Ref 3 

MoS2+x/FTO 10 -310 Ref 4 
CoP/CC 10 -209 Ref 5 

Co-NRCNTs 10 -370 Ref 6 
Ni2P 20 -205 Ref 7 

FeP NAs/CC 10 -218 Ref 8 
NiS2/MoS2 HNW 10 -204 Ref 9 

NiMoN 10 -109 Ref 10 
S:Co2P@NF 10 -105 Ref 11 
S-MoP NPL 10 -104 Ref 12 
N-NiCo2S4 10 -41 Ref 13 

Ni4Mo 10 -35 Ref 14 
CoP2xSe2(1-x) 10 -98 Ref 30 

Ni–W–O/NiMoO4-1 10 -52 Ref 31 
SLG/FLG-DE 10 -85 Ref 32 

NiO/Al3Ni2 10 -66 Ref 33 
N−Ni 10 -95 Ref 34 

PANI/Ni/NF 10 -72 Ref 35 
NiMo-NWs/Ni-foam 10 -30 Ref 36 
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Table S2 Comparison of electrocatalytic OER activity of various nonprecious catalysts with those 
reported in the literature.  

Catalysts J (mA cm-2) η (mV) Electrolyte Reference 
Ni/Co2N 10 320 1.0M KOH This work 

O-Ni0.75Fe0.25P2 10 155 1.0M KOH Ref 37 
Co4N 10 330 1.0M KOH Ref 38 

S:Co2P@NF 10 288 1.0M KOH  Ref 11 
Surface 

Oxi.-Co2P@C 
10 310 1.0M KOH  Ref 39 

Metallic Co2P NWs 10 280 1.0M KOH  Ref 40 
Co2P/N,P co-doped 

CNT 
10 292 1.0M KOH  Ref 15 

Co(OH)2 10 290 1.0M KOH Ref 30 
CoO/CoxP 10 370 0.1M KOH Ref 41 

(Co,Fe)3N_2D 10 310 0.1M KOH Ref 42 
NiFe2O4−H2 10 389 1.0M KOH Ref 43 
Co3S4/AC 10 270 1.0M KOH Ref 44 
Co-Fe-P 10 235 1.0M KOH Ref 45 

Ni–Fe–Se cages 10 240 1.0M KOH Ref 46 
NiCo2S4@g‐C3N4

‐CNT 
10 330 1.0M KOH Ref 47 

NiPS3-G 10 294 1.0M KOH Ref 48 
Co-Bi/Ti3C2Tx 10 250 1.0M KOH Ref 49 
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Table S3. Comparison with overpotential η10 in various electrocatalysts for overall water splitting with 
those reported in the literature.  

Material η10 (mV) η100 (mV) Reference 

Ni/Co2N 340 530 This work 
S-Co2P-S-Co2P@NF 400 567 Ref 11 

Co2P/N, P co-doped CNT  424  Ref 15 
CoP/TM 410  Ref 16 
Co-P film 420  Ref 17 

Co1Mn1CH/NF 450  Ref 18 
NiFe-OH-PO4/NF 450  Ref 19 

Amorphous CoSe film/Ti  420  Ref 20 
CoP-MNA/Ni Foam 390  Ref 21 

NiCo2Se4 holey nanosheets 450  Ref 22 
Ni2P nanoparticle 400  Ref 23 
NixFe3−x-O/NF 410 

 
 Ref 24 

Hollow Co3O4 MTA 400  Ref 25 
Co3O4 NC/CFP 680  Ref 26 
NiCo2S4 NA/CC 450  Ref 27 
CoSx/Ni3S2@NF 342  Ref 28 

NiCoP/CC 290 540 Ref 29 
Ni2P/Ni/NF 260 450 Ref 1 
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