American Chemical Society
Browse
pr6b00572_si_001.pdf (1.54 MB)

Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress

Download (1.54 MB)
journal contribution
posted on 2016-10-26, 00:00 authored by Ghazala Mustafa, Setsuko Komatsu
Rapid developments in nanotechnology have led to the increasing use of nanoparticles (NPs) in the agricultural sector. For possible interactions between NPs and crops under flooding stress to be investigated, the molecular mechanisms in soybeans affected by exposure to various sizes of Al2O3 NPs were analyzed using a proteomic technique. In plants exposed to 30–60 nm Al2O3 NPs, the length of the root including hypocotyl was increased, and proteins related to glycolysis were suppressed. Exposure to 30–60 nm Al2O3 NPs mediated the scavenging activity of cells by regulating the ascorbate/glutathione pathway. Hierarchical clustering analysis indicated that ribosomal proteins were also increased upon exposure to flooding-stressed plants with 30–60 nm Al2O3 NPs. Mitochondrion was the target organelle of Al2O3 NPs under flooding-stress conditions. Mitochondrial proteomic analysis revealed that the abundance of voltage-dependent anion channel protein was increased upon exposure to flooding-stressed soybeans with 135 nm Al2O3 NPs, indicating the permeability of the mitochondrial membrane was increased. Furthermore, isocitrate dehydrogenase was increased upon exposure of plants to 5 nm Al2O3 NPs under flooding conditions. These results suggest that Al2O3 NPs of various sizes affect mitochondrial proteins under flooding stress by regulating membrane permeability and tricarboxylic acid cycle activity.

History