American Chemical Society
Browse
jm200363d_si_001.pdf (319.17 kB)

Inhibition of 1-Deoxy-d-Xylulose-5-Phosphate Reductoisomerase by Lipophilic Phosphonates: SAR, QSAR, and Crystallographic Studies

Download (319.17 kB)
journal contribution
posted on 2011-07-14, 00:00 authored by Lisheng Deng, Jiasheng Diao, Pinhong Chen, Venugopal Pujari, Yuan Yao, Gang Cheng, Dean C. Crick, B. V. Venkataram Prasad, Yongcheng Song
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is a novel target for developing new antibacterial (including antituberculosis) and antimalaria drugs. Forty-one lipophilic phosphonates, representing a new class of DXR inhibitors, were synthesized, among which 5-phenylpyridin-2-ylmethylphosphonic acid possesses the most activity against E. coli DXR (EcDXR) with a Ki of 420 nM. Structure–activity relationships (SAR) are discussed, which can be rationalized using our EcDXR:inhibitor structures, and a predictive quantitative SAR (QSAR) model is also developed. Since inhibition studies of DXR from Mycobacterium tuberculosis (MtDXR) have not been performed well, 48 EcDXR inhibitors with a broad chemical diversity were found, however, to generally exhibit considerably reduced activity against MtDXR. The crystal structure of a MtDXR:inhibitor complex reveals the flexible loop containing the residues 198–208 has no strong interactions with the 3,4-dichlorophenyl group of the inhibitor, representing a structural basis for the reduced activity. Overall, these results provide implications in the future design and development of potent DXR inhibitors.

History