American Chemical Society
Browse
am8b20420_si_001.pdf (307.7 kB)

Increased Flexibility in Polyimide Aerogels Using Aliphatic Spacers in the Polymer Backbone

Download (307.7 kB)
journal contribution
posted on 2019-02-22, 15:36 authored by Marcos Pantoja, Nicholas Boynton, Kevin A. Cavicchi, Bushara Dosa, Jessica L. Cashman, Mary Ann B. Meador
Polyimide aerogels are mechanically strong porous solids with high surface area, low density, and dielectric constants close to 1, making them ideal materials for use as substrates for lightweight antennas. Increasing the flexibility of the polyimide aerogels extends the usefulness for conformal antennas for use on small aircraft such as unmanned air vehicles or personal air mobility vehicles. To this end, polyimide aerogels made with aromatic amines with 4–10 methylene units as flexible spacers between aromatic rings in the backbone have been fabricated. Substituting 25–75 mol % of fully aromatic 2,2′-dimethylbenzidine with these flexible diamines increases the flexibility of polyimide aerogels, making them bendable at thicknesses up to 2–3 mm. The density, dielectric constants, thermal and moisture stability, and mechanical properties of these aerogels were assessed to understand the effect of the amount and length of the methylene spacers on these properties.

History