American Chemical Society
Browse
mp9b00988_si_001.pdf (759.13 kB)

Improved Antitumor Activity of Novel Redox-Responsive Paclitaxel-Encapsulated Liposomes Based on Disulfide Phosphatidylcholine

Download (759.13 kB)
journal contribution
posted on 2019-12-03, 17:42 authored by Yawei Du, Zhi Wang, Tao Wang, Wei He, Wenya Zhou, Man Li, Chen Yao, Xinsong Li
The microtubule inhibitor paclitaxel (PTX) is used to treat a wide range of solid tumors. Due to the poor aqueous solubility of PTX, a continuous demand for safe, efficient PTX formulations with improved antitumor activity exists. Here, we report a novel form of redox-sensitive paclitaxel (PTX)-encapsulated liposomes based on the previously developed disulfide phosphatidylcholine (SS-PC). PTX-loaded stealth liposomes (PTX/SS-LP) composed of SS-PC, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG2000 (DSPE-PEG2000), and cholesterol were prepared using the reverse-phase evaporation method. The characterization of the PTX/SS-LP liposomes using dynamic light scattering and transmission electron microscopy confirmed their uniform particle size and typical unilamellar vesicle structure with an average bilayer thickness of approximately 4 nm. Changes in the size and morphology as well as the rapid release of PTX triggered by the addition of dithiothreitol revealed the redox sensitivity of PTX/SS-LP. Finally, evaluations in MCF-7 and A549 cells in vitro and in BALB/c mice in vivo revealed the improved anticancer efficiency, biodistribution, and safety of PTX/SS-LP compared with those of Taxol and nonredox-sensitive PTX/LP. In conclusion, PTX/SS-LP displays a redox-responsive release of paclitaxel with improved antitumor activity and has great potential as a next-generation stealth liposomal PTX delivery system.

History