American Chemical Society
Browse
ab9b01773_si_003.avi (106.51 kB)

Genetic Control of Radical Cross-linking in a Semisynthetic Hydrogel

Download (106.51 kB)
media
posted on 2020-02-18, 18:45 authored by Austin J. Graham, Christopher M. Dundas, Alexander Hillsley, Dain S. Kasprak, Adrianne M. Rosales, Benjamin K. Keitz
Enhancing materials with the qualities of living systems, including sensing, computation, and adaptation, is an important challenge in designing next-generation technologies. Living materials address this challenge by incorporating live cells as actuating components that control material function. For abiotic materials, this requires new methods that couple genetic and metabolic processes to material properties. Toward this goal, we demonstrate that extracellular electron transfer (EET) from Shewanella oneidensis can be leveraged to control radical cross-linking of a methacrylate-functionalized hyaluronic acid hydrogel. Cross-linking rates and hydrogel mechanics, specifically storage modulus, were dependent on various chemical and biological factors, including S. oneidensis genotype. Bacteria remained viable and metabolically active in the networks for a least 1 week, while cell tracking revealed that EET genes also encode control over hydrogel microstructure. Moreover, construction of an inducible gene circuit allowed transcriptional control of storage modulus and cross-linking rate via the tailored expression of a key electron transfer protein, MtrC. Finally, we quantitatively modeled hydrogel stiffness as a function of steady-state mtrC expression and generalized this result by demonstrating the strong relationship between relative gene expression and material properties. This general mechanism for radical cross-linking provides a foundation for programming the form and function of synthetic materials through genetic control over extracellular electron transfer.

History