American Chemical Society
Browse
ab9b01610_si_001.pdf (1.17 MB)

Gelatin-Based 3D Microgels for In Vitro T Lineage Cell Generation

Download (1.17 MB)
journal contribution
posted on 2020-03-11, 20:19 authored by Anisha B. Suraiya, Michael L. Hun, Vinh X. Truong, John S. Forsythe, Ann P. Chidgey
T cells are predominantly produced by the thymus and play a significant role in maintaining our adaptive immune system. Physiological involution of the thymus occurs gradually with age, compromising naive T cell output, which can have severe clinical complications. Also, T cells are utilized as therapeutic agents in cancer immunotherapies. Therefore, there is an increasing need for strategies aimed at generating naive T cells. The majority of in vitro T cell generation studies are performed in two-dimensional (2D) cultures, which ignore the physiological thymic microenvironment and are not scalable; therefore, we applied a new three-dimensional (3D) approach. Here, we use a gelatin-based 3D microgel system for T lineage induction by co-culturing OP9-DL4 cells and mouse fetal-liver-derived hematopoietic stem cells (HSCs). Flow cytometric analysis revealed that microgel co-cultures supported T lineage induction similar to 2D cultures while providing a 3D environment. We also encapsulated mouse embryonic thymic epithelial cells (TECs) within the microgels to provide a defined 3D culture platform. The microgel system supported TEC maintenance and retained their phenotype. Together, these data show that our microgel system has the capacity for TEC maintenance and induction of in vitro T lineage differentiation with potential for scalability.

History