Functionalization of Clinically Approved MRI Contrast Agents for the Delivery of VEGF

In combining the two clinically approved substances ferumoxytol and VEGF-165 via peptide coupling, we propose a straightforward approach to obtain a potentially ready-to-use theranostic contrast agent for specific cardiovascular diseases. Clinical and preclinical magnetic resonance imaging (MRI) studies have shown that intravenously applied superparamagnetic ferumoxytol nanoparticles accumulate in acute ischemic myocardial tissue. On the other hand, growth factors such as VEGF-165 (vascular endothelial growth factor) play a major role during angiogenesis and vasculogenesis. Promising clinical studies with systemic application of VEGF-165 have been performed in the past. However, following untargeted systemic application, the biological half-life of VEGF-165 was too short to develop its full effect. Therefore, we hypothesized that ferumoxytol particles functionalized with VEGF-165 will accumulate in ischemic myocardial regions and can be detected by MRI, while the prolonged retention of VEGF-165 due to ferumoxytol-coupling will help to prevent adverse tissue remodeling. In addition, strategies such as magnetic targeting can be used to enhance targeted local accumulation. As a precondition for further preclinical research, we confirmed the successful coupling between ferumoxytol and VEGF-165 in detail (TEM, XPS, and IR spectroscopy), characterized the functionalized ferumoxytol particles (DLS, TEM, and MRI) and performed in vitro tests that showed their superior effect on cell growth and survival.