American Chemical Society
Browse
am9b14649_si_001.pdf (5.46 MB)

Flexible Inkjet-Printed Triple Cation Perovskite X‑ray Detectors

Download (5.46 MB)
journal contribution
posted on 2020-03-17, 18:13 authored by Henning Mescher, Fabian Schackmar, Helge Eggers, Tobias Abzieher, Marcus Zuber, Elias Hamann, Tilo Baumbach, Bryce S. Richards, Gerardo Hernandez-Sosa, Ulrich W. Paetzold, Uli Lemmer
Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic–inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors. Inspired by the promising results recently reported on X-ray detectors that are based on either triple cation perovskites or inkjet-printed perovskite quantum dots, we here investigate flexible inkjet-printed triple cation perovskite X-ray detectors. The performance of the detectors is evaluated by the X-ray sensitivity, the dark current, and the X-ray stability. Exposed to 70 kVp X-ray radiation, reproducible and highly competitive X-ray sensitivities of up to 59.9 μC/(Gyaircm2) at low operating voltages of 0.1 V are achieved. Furthermore, a significant dark current reduction is demonstrated in our detectors by replacing spin-coated poly­(3,4-ethylenedioxythiophene)/poly­(styrenesulfonate) (PEDOT:PSS) with sputtered NiOx hole transport layers. Finally, stable operation of a flexible X-ray detector for a cumulative X-ray exposure of 4 Gyair is presented, and the applicability of our devices as X-ray imaging detectors is shown. The results of this study represent a proof of concept toward flexible direct conversion X-ray detectors realized by cost-effective and high-throughput digital inkjet printing.

History