om801119t_si_006.cif (37.21 kB)

Experimental and Theoretical Investigations of Catalytic Alkyne Cross-Metathesis with Imidazolin-2-iminato Tungsten Alkylidyne Complexes

Download (37.21 kB)
posted on 09.03.2009 by Stephan Beer, Kai Brandhorst, Cristian G. Hrib, Xian Wu, Birte Haberlag, Jörg Grunenberg, Peter G. Jones, Matthias Tamm
The imidazolin-2-iminato tungsten alkylidyne complexes [Me3CC≡W(NImR)(OR′)2] (4a: R = tBu, R′ = CMe3; 4b: R = Dipp, R′ = CMe3; 5a: R = tBu, R′ = CMe(CF3)2; 5b: R = Dipp, R′ = CMe(CF3)2 have been prepared from [Me3CC≡W(OCMe3)3] (2) and [Me3CC≡W{OCMe(CF3)2}3(dme)] (3, dme = 1,2-dimethoxyethane) by reaction with the lithium reagents Li(NImtBu) and Li(NImDipp), generated with MeLi from 1,3-di-tert-butylimidazolin-2-imine (ImtBuNH) or 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (ImDippNH), respectively. Reaction of 3 with Li[N(tBu)Ar]·OEt2 (Ar = 3,5-dimethylphenyl) afforded the amido complex [Me3CC≡W{N(tBu)Ar}{OCMe(CF3)2}2] (6). Addition of Li[OCPh(CF3)2] to [Me3CC≡WCl3(dme)] (1) produced the dme-free complex [Me3CC≡W{OCPh(CF3)2}3] (7), which, upon treatment with Li(NImtBu), gave the alkylidene complex 8, presumably formed by activation and addition of an ortho-C−H bond across the W≡C bond in the intermediate alkylidyne complex. Treatment of 1 with Li[OC(CF3)3] led to the substitution of only two chloride ligands and formation of cis-[Me3CC≡WCl{OC(CF3)3}2(dme)] (9), which exhibits long-range through-space 19F−19F coupling between the fluorine atoms of the two OC(CF3)3 ligands. Reaction of 9 with Li(NImtBu) resulted in partial cleavage of the ImtBuN ligand and ligand redistribution to afford the dinuclear tungsten alkylidyne complex 10. The propylidyne complex [EtC≡W(NImtBu){OCMe(CF3)2}2] (12) was obtained by treatment of 5a with 3-hexyne, which proceeded via the metallacyclobutadiene complex 11. Complex 5a is able to rapidly catalyze alkyne cross-metathesis of 3-heptyne to give a statistical 1:2:1 mixture of 3-hexyne, 3-heptyne and 4-octyne. The catalytic homodimerization of 1-phenylpropyne under vacuum-driven conditions was studied for 5a, 5b and 6 at 30 and 80 °C. The molecular structures of complexes 2, 3, 4a, 4b, 5b, 8, 9, 10 and 12 were determined by single crystal X-ray diffraction. High-level DFT calculations employing the B3LYP functional have been carried out for a series of experimentally studied and other alkylidyne complexes by choosing alkyne metathesis of 2-butyne as the model reaction.