American Chemical Society
Browse
am4059217_si_001.pdf (1.48 MB)

Evaluation of Dysprosia Aerogels as Drug Delivery Systems: A Comparative Study with Random and Ordered Mesoporous Silicas

Download (1.48 MB)
journal contribution
posted on 2014-04-09, 00:00 authored by Abhishek Bang, Anand G. Sadekar, Clayton Buback, Brice Curtin, Selin Acar, Damir Kolasinac, Wei Yin, David A. Rubenstein, Hongbing Lu, Nicholas Leventis, Chariklia Sotiriou-Leventis
Biocompatible dysprosia aerogels were synthesized from DyCl3·6H2O and were reinforced mechanically with a conformal nano-thin-polyurea coating applied over their skeletal framework. The random mesoporous space of dysprosia aerogels was filled up to about 30% v/v with paracetamol, indomethacin, or insulin, and the drug release rate was monitored spectrophotometrically in phosphate buffer (pH = 7.4) or 0.1 M aqueous HCl. The drug uptake and release study was conducted comparatively with polyurea-crosslinked random silica aerogels, as well as with as-prepared (native) and polyurea-crosslinked mesoporous silica perforated with ordered 7 nm tubes in hexagonal packing. Drug uptake from random nanostructures (silica or dysprosia) was higher (30–35% w/w) and the release rate was slower (typically >20 h) relative to ordered silica (19–21% w/w, <1.5 h, respectively). Drug release data from dysprosia aerogels were fitted with a flux equation consisting of three additive terms that correspond to drug stored successively in three hierarchical pore sites on the skeletal framework. The high drug uptake and slow release from dysprosia aerogels, in combination with their low toxicity, strong paramagnetism, and the possibility for neutron activation render those materials attractive multifunctional vehicles for site-specific drug delivery.

History