American Chemical Society
Browse
jp900293v_si_001.pdf (995.68 kB)

Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems

Download (995.68 kB)
journal contribution
posted on 2009-04-16, 00:00 authored by Catarina M. S. S. Neves, Sónia P. M. Ventura, Mara G. Freire, Isabel M. Marrucho, João A. P. Coutinho
In addition to the large range of applications proposed in literature, ionic liquids (ILs) have been recently reported to be able to form aqueous biphasic systems (ABS). They could thus be interesting media in biotechnological applications for the separation and purification of vital biomolecules. Therefore, in this work, a systematic study involving a large number of imidazolium-based ILs was conducted to provide new information related to ILs’ ABS-promoting capability and extraction ability. For that purpose, the influence of the number of alkyl groups present at the cation, the cation side alkyl chain length, and the presence of double bonds, aromatic rings, and hydroxyl groups on this alkyl chain were evaluated. Ternary phase diagrams of the ABS formed by these ILs and K3PO4 and the respective tie-lines were measured and presented. The ABS here investigated were further characterized for the first time accordingly to their extractive potential for amino acids, where l-tryptophan was selected as a model biomolecule. The partition coefficients here obtained were shown to be substantially larger than those observed in conventional ABS, demonstrating therefore the fine potential of IL-based ABS for biomolecules separation and purification.

History