American Chemical Society
Browse
bm9b01681_si_001.pdf (1.89 MB)

Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells

Download (1.89 MB)
journal contribution
posted on 2020-02-24, 13:56 authored by Radhika Raveendran, Fan Chen, Ben Kent, Martina H. Stenzel
Tumor targeting has revolutionized cancer research, especially active cellular targeting of nanoparticles, where they are specifically homed to the pathological site to deliver the therapeutics. This strategy, which involves the utilization of affinity ligands on the surface of the nanocarriers, minimizes the nonspecific uptake of nanocarriers and the subsequent harmful side effects in healthy cells. Estrone, one of the mammalian estrogens, has affinity for estrogen receptors (ERα), which are overexpressed in hormone-responsive breast cancers. Despite holding promise, the potential of estrone in active targeting of nanoparticles has barely been explored. Herein, we developed an estrone-appended polyion complex (PIC) micelle to deliver melittin, a cytotoxic peptide, to breast cancer cells. Amino functionalization of estrone was performed to conjugate estrone to the diblock polymer synthesized by reversible addition–fragmentation chain-transfer (RAFT) polymerization. Estrone-conjugated poly­(ethylene glycol) methyl ether methacrylate-b-poly tert-butyl methacrylate (POEGMEMA-PtBuMA) could complex with melittin to form PIC micelles of size around 60 nm ensuing from the electrostatic interaction of the deprotected polymer and melittin in aqueous media. Poly­(ethylene glycol) methyl ether acrylate-b-poly acrylic acid (POEGMEA-PAA) was also later incorporated to afford PIC micelles that could exhibit similar cytotoxicity to free melittin in the cytotoxicity studies. The estrone-attached PIC micelles exhibited improved cytotoxicity in two-dimensional (2D) and three-dimensional (3D) cellular models of MCF-7 cells. Cross-linking of the PIC micelles was also performed to improve the stability of the micelles and prevent melittin degradation from enzymatic attack. Flow cytometry demonstrated an enhanced cellular uptake greater than sixfold with the estrone-conjugated PIC micelles, thereby establishing a profound difference in the targeting efficacy of the PIC micelles between MCF-7 and MDA-MB-231 cells. Furthermore, the distribution of the PIC micelles in the spheroids was revealed by light sheet microscopy. The results demonstrate the potential of estrone-anchored PIC micelles for targeted delivery of therapeutics to hormone-responsive breast cancer cells.

History