Epitaxial Supramolecular Assembly of Fullerenes Formed by Using a Coronene Template on a Au(111) Surface in Solution

Characteristic properties of the coronene layer formed on Au(111) for the epitaxial growth of various fullerenes are described. The electrochemical behavior of the coronene adlayer prepared by immersing a Au(111) substrate into a benzene solution containing coronene was investigated in 0.1 M HClO4. The as-prepared coronene adlayer on Au(111) revealed a well-defined (4 × 4) structure. Structural changes of the array of coronene molecules induced by potential manipulation were clearly observed by in situ scanning tunneling microscopy (STM). Supramolecularly assembled layers of fullerenes such as C60, C70, C60−C60 dumbbell dimer (C120), C60−C70 cross-dimer (C130), and C60 triangle trimer (C180) were formed on the well-defined coronene adlayer on the Au(111) surface by immersing the coronene-adsorbed Au(111) substrate into benzene solutions containing those molecules. The adlayers thus prepared were characterized by comparison with those which were directly attached to the Au(111) surface. The C60 molecules formed a honeycomb array with an internal structure in each C60 cage on the coronene adlayer, whereas C70 molecules were one-dimensionally arranged with the same orientations. The dimers, C120 and C130 molecules, formed an identical structure with c(11 × 4√3)rect symmetry. For the C130 cross-dimer molecule, C60 and C70 cages were clearly recognized at the molecular level. It was difficult to identify the adlayer of the C180 molecule directly attached to Au(111); however, individual C180 molecules could be recognized on the coronene-modified Au(111) surface. Thus, the adlayer structures of those fullerenes were strongly influenced by the underlying coronene adlayer, suggesting that the insertion of a coronene adlayer plays an important role in the formation of supramolecular assemblies of fullerenes.