American Chemical Society
Browse
cs0c00203_si_001.pdf (806.5 kB)

Enhancing CexZr1–xO2 Activity for Methane Dry Reforming Using Subsurface Ni Dopants

Download (806.5 kB)
journal contribution
posted on 2020-03-16, 15:03 authored by Behnam Safavinia, Yuming Wang, Changyi Jiang, Cameron Roman, Pragathi Darapaneni, Jarod Larriviere, David A. Cullen, Kerry M. Dooley, James A. Dorman
CeO2–ZrO2 (CZO) nanoparticles (NPs) have applications in many catalytic reactions, such as methane dry reforming, due to their oxygen cycling ability. Ni doping has been shown to improve the catalytic activity and produces active sites for the decomposition of methane. In this work, Ni:CZO NPs were synthesized via a two-step co-precipitation/molten salt synthesis to compare Ni distribution, oxygen vacancy concentration, and catalytic activity relative to a reference state-of-the-art catalyst prepared by a sol–gel-adsorptive deposition technique. To better understand the dispersion of Ni and oxygen vacancy formation in these materials, the Ni concentration, position, and reaction time were varied in the synthesis. X-ray diffraction (XRD) measurements show a homogeneous, cubic phase with little to no segregation of Ni/NiO. Catalytic activity measurements, performed via a differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA) method, displayed a 5-fold increase in the activity per surface area with an order of magnitude decrease in the coking rate for the particles synthesized by the molten salt method. Additionally, this approach resulted in an order of magnitude increase in oxygen vacancies, which is attributed to the high dispersion of Ni2+ ions in the NP core. This ability of controlling the oxygen vacancies in the lattice is expected to impact other such systems, which utilize the substrate redox cyclability to drive conversion via, e.g., a Mars–van Krevelen mechanism.

History