Electrochemical Detection of Epidermal Growth Factor Receptors on a Single Living Cell Surface by Scanning Electrochemical Microscopy

A membrane protein on the surface of a single living mammalian cell was imaged by scanning electrochemical microscopy (SECM). The epidermal growth factor receptor (EGFR) is one of the key membrane proteins associated with cancer. It elicits a wide range of cell-type-specific responses, leading to cell proliferation, differentiation, apoptosis, and migration. To estimate EGFR expression levels by SECM, EGFR was labeled with alkaline phosphatase (ALP) via an antibody. The oxidation current of PAP (p-aminophenol) produced by the ALP-catalyzed reaction was monitored to estimate the density of cell surface EGFR. EGFR measurement by SECM has three advantages. First, a single adhesion cell can be measured without peeling it from the culture dish; second, it is possible to optimize labeling antibody concentrations by using living cells because detection of faradaic current is suitable for quantitative estimation in situ; and third, SECM measurements afford information on the expression state at the cell membrane at the single-cell level. In this study, we optimized the concentration of labeling antibody for EGFR at the cell surface and confirmed distinct differences in EGFR expression levels among three types of cells. SECM measurements were compatible with the results of flow cytometry.