American Chemical Society
Browse
cs9b02609_si_001.pdf (5.4 MB)

Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy

Download (5.4 MB)
journal contribution
posted on 2019-08-23, 14:40 authored by Xiaohong Xie, Miao Song, Luguang Wang, Mark H. Engelhard, Langli Luo, Andrew Miller, Yayun Zhang, Lei Du, Huilin Pan, Zimin Nie, Yuanyuan Chu, Luis Estevez, Zidong Wei, Hong Liu, Chongmin Wang, Dongsheng Li, Yuyan Shao
Electrolysis in neutral pH solutions (e.g., wastewater and seawater) presents a transformative way for environmentally friendly, cost-effective hydrogen production. However, one of the biggest challenges is the lack of active, robust hydrogen evolution reaction (HER) catalysts. Herein, we present a catalyst with dual-active sites of MoP2 and MoP, which function synergistically to promote HER in neutral pH solutions. In our microbial electrolysis cell (MEC) test, which uses neutral pH wastewater as feedstock, this catalyst delivers an average HER current density of 157 A mcathode‑surface‑area–2, higher than Pt catalyst (145 A mcathode‑surface‑area–2)with the same amount of catalyst loading, ∼5 times higher than the state-of-art Pt group metal-free catalysts in MECs. Our catalyst also outperforms Pt in natural seawater with ∼10% higher and more stable HER current density. The fundamental reason for the enhanced HER performance is identified to be the synergy between MoP2 and MoP phases, with MoP2 promoting H2O dissociation and MoP efficiently converting Had into H2.

History