American Chemical Society
Browse
nl5b00630_si_001.pdf (701.61 kB)

Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene–Silicon Microring Resonator

Download (701.61 kB)
journal contribution
posted on 2015-07-08, 00:00 authored by Yunhong Ding, Xiaolong Zhu, Sanshui Xiao, Hao Hu, Lars Hagedorn Frandsen, N. Asger Mortensen, Kresten Yvind
Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modulation, optical–optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene–silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene–silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On–off electro-optical switching with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage.

History