American Chemical Society
Browse
cb8b00377_si_001.pdf (1.89 MB)

Effect of Noncanonical Amino Acids on Protein–Carbohydrate Interactions: Structure, Dynamics, and Carbohydrate Affinity of a Lectin Engineered with Fluorinated Tryptophan Analogs

Download (1.89 MB)
journal contribution
posted on 2018-05-29, 00:00 authored by Felix Tobola, Mickael Lelimousin, Annabelle Varrot, Emilie Gillon, Barbara Darnhofer, Ola Blixt, Ruth Birner-Gruenberger, Anne Imberty, Birgit Wiltschi
Protein–carbohydrate interactions play crucial roles in biology. Understanding and modifying these interactions is of major interest for fighting many diseases. We took a synthetic biology approach and incorporated noncanonical amino acids into a bacterial lectin to modulate its interactions with carbohydrates. We focused on tryptophan, which is prevalent in carbohydrate binding sites. The exchange of the tryptophan residues with analogs fluorinated at different positions resulted in three distinctly fluorinated variants of the lectin from Ralstonia solanacearum. We observed differences in stability and affinity toward fucosylated glycans and rationalized them by X-ray and modeling studies. While fluorination decreased the aromaticity of the indole ring and, therefore, the strength of carbohydrate–aromatic interactions, additional weak hydrogen bonds were formed between fluorine and the ligand hydroxyl groups. Our approach opens new possibilities to engineer carbohydrate receptors.

History