American Chemical Society
Browse
bm9b01249_si_001.pdf (1.02 MB)

Effect of Atomized Delivery of Nutrients on the Growth Characteristics and Microstructure Morphology of Bacterial Cellulose

Download (1.02 MB)
journal contribution
posted on 2019-12-06, 19:47 authored by Anna-Christina Amason, James F. Nowak, Johnson Samuel, Richard A. Gross
This work demonstrates a general strategy for introducing remarkable changes in matrix organization and, consequently, functional properties of bacterial cellulose (BC). BC-producing cells were induced, using a well-defined atomized droplet nutrient delivery (ADND) system, to form pellicles with a regular layered morphology that persists throughout the mat depth. In contrast, the morphology of mats formed by conventional static medium nutrient delivery (SMND) is irregular with no distinguishable pattern. ADND also resulted in larger meso-scale average pore sizes but did not alter the fibril diameter (∼70 nm) and crystallinity index (92–95%). The specific modulus and specific tensile strength of ADND mats are higher than those of SMND mats. This is due to the regularity of dense layers that are present in ADND mats that are able to sustain tensile loads, when applied parallel to these layers. The density of BC films prepared by ADND is 1.63-fold lower than that of the SMND BC film. Consequently, the water contents (g/g) of ADND- and SMND-prepared BC mats are 263 ± 8.85 and 99.6 ± 2.04, respectively. A model that rationalizes differences in mat morphology resulting from these nutrient delivery methods based on nutrient and oxygen concentration gradients is proposed. This work raises questions as to the extent that ADND can be used to fine-tune the matrix morphology and how the resulting lower density mats will alter the diffusion of actives from the films to wound sites and increase the ability of cells to infiltrate the matrix during tissue engineering.

History