American Chemical Society
Browse
am9b11311_si_001.pdf (592.53 kB)

Dual Selective Gas Sensing Characteristics of 2D α‑MoO3–x via a Facile Transfer Process

Download (592.53 kB)
journal contribution
posted on 2019-10-18, 17:35 authored by Fahmida Rahman, Ali Zavabeti, Md. Ataur Rahman, Aram Arash, Aishani Mazumder, Sumeet Walia, Sharath Sriram, Madhu Bhaskaran, Sivacarendran Balendhran
Metal oxide-based gas sensor technology is promising due to their practical applications in toxic and hazardous gas detection. Orthorhombic α-MoO3 is a planar metal oxide with a unique layered structure, which can be obtained in a two-dimensional (2D) form. In the 2D form, the larger surface area-to-volume ratio of the material facilitates significantly higher interaction with gas molecules while exhibiting exceptional transport properties. The presence of oxygen vacancies results in nonstoichiometric MoO3 (MoO3–x), which further enhances the charge carrier mobility. Here, we study dual gas sensing characteristics and mechanism of 2D α-MoO3–x. Herein, conductometric dual gas sensors based on chemical vapor deposited 2D α-MoO3–x are developed and demonstrated. A facile transfer process is established to integrate the material into any arbitrary substrate. The sensors show high selectivity toward NO2 and H2S gases with response and recovery rates of 295.0 and 276.0 kΩ/s toward NO2 and 28.5 and 48.0 kΩ/s toward H2S, respectively. These gas sensors also show excellent cyclic endurance with a variation in ΔR ∼ 112 ± 1.64 and 19.5 ± 1.13 MΩ for NO2 and H2S, respectively. As such, this work presents the viability of planar 2D α-MoO3–x as a dual selective gas sensor.

History