American Chemical Society
Browse
pt0c00008_si_001.pdf (2.91 MB)

Differential Role of Serines and Threonines in Intracellular Loop 3 and C‑Terminal Tail of the Histamine H4 Receptor in β‑Arrestin and G Protein-Coupled Receptor Kinase Interaction, Internalization, and Signaling

Download (2.91 MB)
journal contribution
posted on 2020-03-23, 19:36 authored by Eléonore W. E. Verweij, Betty Al Araaj, Wimzy R. Prabhata, Rudi Prihandoko, Saskia Nijmeijer, Andrew B. Tobin, Rob Leurs, Henry F. Vischer
The histamine H4 receptor (H4R) activates Gαi-mediated signaling and recruits β-arrestin2 upon stimulation with histamine. β-Arrestins play a regulatory role in G protein-coupled receptor (GPCR) signaling by interacting with phosphorylated serine and threonine residues in the GPCR C-terminal tail and intracellular loop 3, resulting in receptor desensitization and internalization. Using bioluminescence resonance energy transfer (BRET)-based biosensors, we show that G protein-coupled receptor kinases (GRK) 2 and 3 are more quickly recruited to the H4R than β-arrestin1 and 2 upon agonist stimulation, whereas receptor internalization dynamics toward early endosomes was slower. Alanine-substitution revealed that a serine cluster at the distal end of the H4R C-terminal tail is essential for the recruitment of β-arrestin1/2, and consequently, receptor internalization and desensitization of G protein-driven extracellular-signal-regulated kinase (ERK)­1/2 phosphorylation and label-free cellular impedance. In contrast, alanine substitution of serines and threonines in the intracellular loop 3 of the H4R did not affect β-arrestin2 recruitment and receptor desensitization, but reduced β-arrestin1 recruitment and internalization. Hence, β-arrestin recruitment to H4R requires the putative phosphorylated serine cluster in the H4R C-terminal tail, whereas putative phosphosites in the intracellular loop 3 have different effects on β-arrestin1 versus β-arrestin2. Mutation of these putative phosphosites in either intracellular loop 3 or the C-terminal tail did not affect the histamine-induced recruitment of GRK2 and GRK3 but does change the interaction of H4R with GRK5 and GRK6, respectively. Identification of H4R interactions with these proteins is a first step in the understanding how this receptor might be dysregulated in pathophysiological conditions.

History