American Chemical Society
Browse
ac6b02353_si_001.pdf (755.83 kB)

Decoration of Reduced Graphene Oxide Nanosheets with Aryldiazonium Salts and Gold Nanoparticles toward a Label-Free Amperometric Immunosensor for Detecting Cytokine Tumor Necrosis Factor‑α in Live Cells

Download (755.83 kB)
journal contribution
posted on 2016-09-07, 00:00 authored by Meng Qi, Yin Zhang, Chaomin Cao, Mingxing Zhang, Shenghua Liu, Guozhen Liu
In this study, a label-free electrochemical immunosensor was developed for detection of cytokine tumor necrosis factor-alpha (TNF-α). First, AuNPs loaded reduced graphene oxides nanocomposites (RGO-ph-AuNP) were prepared, and then, a mixed layer of 4-carbxyphenyl and 4-aminophenyl phosphorylcholine (PPC) was modified to the surface of AuNPs for the subsequent modification of anti-TNF-α capture antibody (Ab1) to form the capture surface (Au-RGO-ph-AuNP-ph-PPC­(-ph-COOH)) for the analyte TNF-α with the antifouling property. For reporting the presence of analyte, the anti-TNF-α detection antibody (Ab2) was modified to the graphene oxides which have been modified with the 4-ferrocenylaniline through diazonium chemistry to form Ab2-GO-ph-Fc. Then, a sandwich assay was formed on gold surfaces for the quantitative detection of TNF-α based on the electrochemical signal of ferrocene. X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis, and electrochemistry were used for characterization of the stepwise fabrications on the interface. The prepared electrochemical immunosensor was successfully used for the detection of TNF-α over the range of 0.1–150 pg mL–1. The lowest detection limit of this immunosensor is 0.1 pg mL–1 TNF-α in 50 mM phosphate buffer at pH 7.0. The fabricated immunosensor provided high selectivity and stability and can be used to detect TNF-α secreted by live BV-2 cells with comparable accuracy to enzyme-linked immunosorbent assay (ELISA) but with lower limit of detection.

History