American Chemical Society
Browse
ja0289999_si_001.pdf (92.01 kB)

Correlated Layer Structures:  A Novel Type of Liquid Crystalline Phase with 2D-Lattice

Download (92.01 kB)
journal contribution
posted on 2002-12-20, 00:00 authored by Marko Prehm, Siegmar Diele, Malay K. Das, Carsten Tschierske
A novel liquid crystalline quaternary five-block molecule is reported which is composed of four incompatible molecular parts, a rigid biphenyl core, two polar 2,3-dihydroxypropoxy groups in the terminal 4- and 4‘-positions, and a branched semiperfluorinated chain in the lateral 3-position, consisting of a perfluorinated and a lipophilic hydrocarbon wing. The self-organization of this compound was studied by polarized light optical microscopy, differential scanning calorimetry, and X-ray diffraction of aligned samples. These investigations confirm a novel liquid crystalline phase with two-dimensional (2D) lattice (columnar mesophase), which results from the positional correlation of smectic layers. The layer structure results from the segregation of the bolaamphiphilic parts from the side chains. Within the aromatic sublayers the biphenyl cores are arranged parallel to the layer planes, and the hydrogen-bonding networks of the terminal diol groups are segregated from the biphenyl cores, forming separate columns. The correlation between adjacent layers is due to the (partial) segregation of the fluorinated and hydrogenated parts of the lateral chains in the nonpolar sublayers.

History