Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon

Silicon wafers are commonly etched in potassium hydroxide solutions to form highly symmetric surface structures. These arise when slow-etching {111} atomic planes are exposed on standard low-index surfaces. However, the ability of nonstandard high-index wafers to provide more complex structures by tilting the {111} planes has not been fully appreciated. We demonstrate the power of this approach by creating chiral surface structures and nanoparticles of a specific handedness from gold. When the nanoparticles are dispersed in liquids, gold colloids exhibiting record molar circular dichroism (>5 × 109 M–1 cm–1) at red wavelengths are obtained. The nanoparticles also present chiral pockets for binding.