American Chemical Society
Browse
ja0107733_si_001.pdf (1.2 MB)

Chiral Diamines 4:  A Computational Study of the Enantioselective Deprotonation of Boc-pyrrolidine with an Alkyllithium in the Presence of a Chiral Diamine

Download (1.2 MB)
journal contribution
posted on 2001-07-27, 00:00 authored by Kenneth B. Wiberg, William F. Bailey
The enantioselective deprotonation of N-Boc-pyrrolidine (1) with i-PrLi−(−)-sparteine has been studied at theoretical levels up through B3P86/6-31G*. Four low-energy intermediate complexes involving i-PrLi−(−)-sparteine and 1 were located via geometry optimizations; two of these complexes would lead to abstraction of the pro-S hydrogen from 1, and the other two complexes would lead to loss of the pro-R hydrogen. The lowest-energy intermediate complex was found to lead to loss of the pro-S hydrogen as observed experimentally. Transition states for the deprotonations were located using the synchronous transit-guided quasi-Newton method. The calculated activation enthalpy for transfer of the pro-S hydrogen within the lowest-energy intermediate complex, 10.8 kcal/mol, is reasonable for a reaction that occurs at a relatively low temperature, and the calculated kinetic hydrogen isotope effect is in agreement with experimental data. The lower enantioselectivity observed experimentally for deprotonation of 1 using t-BuLi−(−)-sparteine is attributed to a transition-state effect due to increased steric interaction engendered by the bulky t-BuLi. Replacement of the tert-butoxycarbonyl group in 1 by a methoxycarbonyl is predicted to result in a slower deprotonation with somewhat decreased enantioselectivity. Asymmetric deprotonation of 1 using i-PrLi in combination with the C2-symmetric diamine, (S,S)-1,2-bis(N,N-dimethylamino)cyclohexane, was calculated to be much less selective than is the deprotonation mediated by (−)-sparteine as observed experimentally. The relative energies of the intermediate complexes were fairly well-reproduced by ONIUM calculations in which the sparteine ligand less its nitrogen atoms was treated by molecular mechanics and the remainder of the complex was treated by quantum mechanics.

History

Usage metrics

    Journal of the American Chemical Society

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC