American Chemical Society
Browse
np400129z_si_001.pdf (508.23 kB)

Caffeic Acid Phenethyl Ester Inhibits Alpha-Melanocyte Stimulating Hormone-Induced Melanin Synthesis through Suppressing Transactivation Activity of Microphthalmia-Associated Transcription Factor

Download (508.23 kB)
journal contribution
posted on 2013-08-23, 00:00 authored by Ji-Yeon Lee, Hee-Jung Choi, Tae-Wook Chung, Cheorl-Ho Kim, Han-Sol Jeong, Ki-Tae Ha
Caffeic acid phenethyl ester (1), a natural compound found in various plants and propolis, is a well-known anti-inflammatory, immunomodulatory, and cytotoxic agent. The present study aimed to investigate the molecular events underlying the antimelanogenic activity of 1 in alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16-F10 melanoma cells. In this investigation, 1 effectively reduced α-MSH-stimulated melanin synthesis by suppressing expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2), although this compound did not directly inhibit tyrosinase enzyme activity. On the other hand, the expression and nuclear translocation of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis were not affected by treatment with 1. The upstream signaling pathways including cAMP response element-binding protein (CREB), glycogen synthase kinase-3β (GSK-3β), and Akt for activation and expression of MITF were also not influenced by 1. Interestingly, 1 inhibited transcriptional activity of a tyrosinase promoter by suppressing the interaction of MITF protein with an M-box containing a CATGTG motif on the tyrosinase promoter. Given the important role of MITF in melanogenesis, suppression of 1 on the function of MITF to transactivate tyrosinase promoter may present a novel therapeutic approach to treat hyperpigmentation disorders.

History