American Chemical Society
Browse
ao8b00457_si_001.pdf (5.57 MB)

Branched CdO/ZnO Core/Shell Heterogeneous Structure and Its Enhanced Photoelectrocatalytic Performance

Download (5.57 MB)
journal contribution
posted on 2018-09-20, 17:38 authored by Pu Sun, Ruping Liu, Ruifang Ma, Zhengdao Xie, Fan Su, Yanfang Gong, Zeming Mu, Luhai Li, Yen Wei, Qiang Wan
Branched nanostructures of semiconductors based on one-dimensional heterostructures have many promising applications in optoelectronics, supercapacitors, photocatalysts, etc. Here, we report a novel branched core/shell CdO/ZnO hetero-nanostructure that resembles a Crimson bottlebrush (Callistemon Citrinus) but with intriguing hexagonal symmetry. The nanomaterials were fabricated via an improved one-step chemical vapor deposition method and consist of a CdO wire as the core and ZnO as the shell. With cadmium acting as a catalyst, ZnO nanowires grow as perpendicular branches from the CdO/ZnO one-dimensional core/shell structure. The nanostructures were characterized with X-ray diffraction scanning and transmission electron microscopy. A homogeneous epitaxial growth mechanism has been postulated for the formation of the nanostructure. The materials show a broad and strong absorption ranging from visible to ultraviolet and a better photoelectrocatalytic properties in comparison to pure ZnO or CdO. Our synthetic strategy may open up a new way for controlled preparation of one-dimensional nanomaterials with core/shell heterostructure, which could find potential applications in solar cells and opto-electrochemical water-splitting devices.

History