American Chemical Society
Browse
am5b01419_si_001.pdf (1.53 MB)

Bandgap Engineering of Coal-Derived Graphene Quantum Dots

Download (1.53 MB)
journal contribution
posted on 2015-04-01, 00:00 authored by Ruquan Ye, Zhiwei Peng, Andrew Metzger, Jian Lin, Jason A. Mann, Kewei Huang, Changsheng Xiang, Xiujun Fan, Errol L. G. Samuel, Lawrence B. Alemany, Angel A. Martí, James M. Tour
Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps.

History