Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires

Au/Ag bilayered metal mesh with arrays of nanoholes were devised as a catalyst for metal-assisted chemical etching of silicon. The present metal catalyst allows us not only to overcome drawbacks involved in conventional Ag-based etching processes, but also to fabricate extended arrays of silicon nanowires (SiNWs) with controlled dimension and density. We demonstrate that SiNWs with different morphologies and axial orientations can be prepared from silicon wafers of a given orientation by controlling the etching conditions. We explored a phenomenological model that explains the evolution of the morphology and axial crystal orientation of SiNWs within the framework of the reaction kinetics.