American Chemical Society
Browse
ja8b09580_si_001.pdf (5.79 MB)

An Artificial Molecular Shuttle Operates in Lipid Bilayers for Ion Transport

Download (5.79 MB)
journal contribution
posted on 2018-11-16, 00:00 authored by Sujun Chen, Yichuan Wang, Ting Nie, Chunyan Bao, Chenxi Wang, Tianyi Xu, Qiuning Lin, Da-Hui Qu, Xueqing Gong, Yi Yang, Linyong Zhu, He Tian
Inspired by natural biomolecular machines, synthetic molecular-level machines have been proven to perform well-defined mechanical tasks and measurable work. To mimic the function of channel proteins, we herein report the development of a synthetic molecular shuttle, [2]­rotaxane 3, as a unimolecular vehicle that can be inserted into lipid bilayers to perform passive ion transport through its stochastic shuttling motion. The [2]­rotaxane molecular shuttle is composed of an amphiphilic molecular thread with three binding stations, which is interlocked in a macrocycle wheel component that tethers a K+ carrier. The structural characteristics enable the rotaxane to transport ions across the lipid bilayers, similar to a cable car, transporting K+ with an EC50 value of 1.0 μM (3.0 mol % relative to lipid). We expect that this simple molecular machine will provide new opportunities for developing more effective and selective ion transporters.

History