Adduct Formation between Alkali Metal Ions and Divalent Metal Salicylaldimine Complexes Having Methoxy Substituents. A Structural Investigation

Sodium, potassium, and cesium salts (iodides, nitrates, acetates, and tetraphenylborates) form 1/1, 1/2 and 2/3 adducts with ML<i><sub>n</sub></i> [M = Co, Ni, Cu, and Zn; <i>n</i> = 1−4; H<sub>2</sub>L<sub>1</sub> = <i>N,N</i>‘-(3-methoxysalicylidene)ethane-1,2-diamine; H<sub>2</sub>L<sub>2</sub>, H<sub>2</sub>L<sub>3</sub>, and H<sub>2</sub>L<sub>4</sub> are the -propane-1,2-diamine, -<i>o</i>-phenylenediamine, and -propane-1,3-diamine analogues of H<sub>2</sub>L<sub>1</sub>). Metal salicylaldimine, alkali metal, and anion all exert influence on stoichiometry and reactivity. Sodium ions tend to reside within the planes of the salicylaldimine oxygens, as in Na(NO<sub>3</sub>)(MeOH)·NiL<sub>4</sub> (<b>1</b>), Na(NO<sub>3</sub>)(MeOH)·CuL<sub>1</sub> (<b>2</b>; both with unusual seven-coordinated sodium), and Na·(NiL<sub>4</sub>)<sub>2</sub>I·EtOH·H<sub>2</sub>O (<b>3</b>; with dodecahedral sodium coordination geometry). Potassium and cesium tend to locate between salicylaldimine ligands as in KI·NiL<sub>4</sub> (<b>4</b>) and [Cs(NO<sub>3</sub>)·NiL<sub>4</sub>]<sub>3</sub>·MeOH (<b>5</b>; structures with infinite sandwich assemblies), CsI·(NiL<sub>2</sub>)<sub>2</sub>·H<sub>2</sub>O (<b>6</b>), CsI<sub>3</sub>·(NiL<sub>4</sub>)<sub>2</sub> (<b>7</b>; simple sandwich structures), and [K(MeCN)]<sub>2</sub>·(NiL<sub>4</sub>)<sub>3</sub> (<b>8</b>; a triple-decker sandwich structure). Crystal data for <b>1</b> are the following:  triclinic, <i>P</i>1, <i>a</i> = 7.3554(6) Å, <i>b</i> = 11.2778(10) Å, <i>c</i> = 13.562(2) Å, α = 96.364(10)°, β = 101.924(9)°, γ = 96.809(10)°, <i>Z</i> = 2. For <b>2</b>, triclinic, <i>P</i>1, <i>a</i> = 7.2247(7) Å, <i>b</i> = 11.0427(6) Å, <i>c</i> = 13.5610(12) Å, α = 94.804(5)°, β = 98.669(7)°, γ = 99.26(6)°, <i>Z</i> = 2. For <b>3</b>, orthorhombic, <i>Pbca</i>, <i>a</i> = 14.4648(19) Å, <i>b</i> = 20.968(3) Å, <i>c</i> = 28.404(3) Å, <i>Z</i> = 8. For <b>4</b>, triclinic, <i>P</i>1, <i>a</i> = 12.4904(17) Å, <i>b</i> = 13.9363(13) Å, <i>c</i> = 14.1060(12) Å, α = 61.033(7)°, β = 89.567(9)°, γ = 71.579(10)°, <i>Z</i> = 2. For <b>5</b>, monoclinic. <i>P</i>2<sub>1</sub>/<i>n</i>, <i>a</i> = 12.5910(2) Å, <i>b</i> = 23.4880(2) Å, <i>c</i> = 22.6660(2) Å, β = 99.3500(1)°, <i>Z</i> = 4. For <b>6</b>, orthorhombic, <i>Pbca</i>, <i>a</i> = 15.752(3) Å, <i>b</i> = 23.276(8) Å, <i>c</i> = 25.206(6) Å, <i>Z</i> = 8. For <b>7</b>, triclinic, <i>P</i>1, <i>a</i> = 9.6809(11) Å, <i>b</i> = 10.0015(13) Å, <i>c</i> = 11.2686(13) Å, α = 101.03°, β = 90.97°, γ = 100.55°, <i>Z</i> = 2. For <b>8</b>, monoclinic, <i>C</i>2/<i>c</i>, <i>a</i> = 29.573(5) Å, <i>b</i> = 18.047(3) Å, <i>c</i> = 23.184(3) Å, β = 122.860(10)°, <i>Z</i> = 8.