A Healable Supramolecular Polymer Blend Based on Aromatic π−π Stacking and Hydrogen-Bonding Interactions

An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π−π stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.