Optical Characterization of Gold Nanoblock Dimers: From Capacitive Coupling to Charge Transfer Plasmons and Rod Modes Man-Nung Su Quan Sun Kosei Ueno Wei-Shun Chang Hiroaki Misawa Stephan Link 10.1021/acs.jpcc.8b05755.s001 https://acs.figshare.com/articles/journal_contribution/Optical_Characterization_of_Gold_Nanoblock_Dimers_From_Capacitive_Coupling_to_Charge_Transfer_Plasmons_and_Rod_Modes/6881996 The optical properties of plasmonic dimers consisting of two adjacent metal nanoparticles can be tuned over a broad spectral range by changing only slightly the dimer geometry. Most drastic are the changes in the smallest interparticles distances, and often only optical spectroscopy together with electromagnetic simulations yields insights into the geometry of the junction. Here, we study the coupling of gold nanoblock dimers, two square nanoantennas with different nanogaps between their closest corners. We identify three different coupling regimesî—¸capacitively coupled, conductively bridged, and fused dimersî—¸and optically characterize the transitions between them. By combining sample array fabrication, single-particle hyperspectral measurements, and electromagnetic simulations, we were able to examine in detail the effects of junction geometry on the resonance energy and intensity of the plasmon modes supported by gold nanoblock dimers. 2018-07-17 00:00:00 electromagnetic simulations interparticles distances sample array fabrication single-particle hyperspectral measurements electromagnetic simulations yields insights Charge Transfer Plasmons plasmonic dimers junction geometry Rod Modes metal nanoparticles Optical Characterization dimer geometry Gold Nanoblock Dimers resonance energy square nanoantennas conductively bridged plasmon modes gold nanoblock dimers