Abrupt Switching of Crystal Fields during Formation of Molecular Contacts ChenJinjie IsshikiHironari BaretzkyClemens BalashovTimofey WulfhekelWulf 2018 Magnetic molecules have the potential to be used as building blocks for bits in quantum computers. The spin states of the magnetic ion in the molecule can be represented by the effective spin Hamiltonian describing the zero field splitting (ZFS) of the magnetic states. We determined the ZFS of mechanically flexible metal-chelate molecules (Co, Ni, and Cu as metal ions) adsorbed on Cu<sub>2</sub>N/Cu­(100) by inelastic tunneling spectroscopy at temperatures down to 30 mK. When moving the tip toward the molecule, the tunneling current abruptly jumps to higher values, indicating the sudden deformation of the molecule bridging the tunneling junction. Hand in hand with the formation of the contact, an abrupt change of the ZFS occurs. This work also implies that ZFS expected in mechanical break junctions can drastically deviate from that of adsorbed molecules probed by other techniques.