Suppression of Protonated Organic Solvents in NMR Spectroscopy Using a Perfect Echo Low-Pass Filtration Pulse Sequence W. A. HowePeter 2018 Proton NMR spectra are usually acquired using deuterated solvents, but in many cases it is necessary to obtain spectra on samples in protonated solvents. In these cases, the intense resonances of the protonated solvents need to be suppressed to maximize sensitivity and spectral quality. A wide range of highly effective solvent suppression methods have been developed, but additional measures are needed to suppress the <sup>13</sup>C satellites of the solvent. Because the satellites represent 1.1% of the original solvent signal, they remain problematic if unsuppressed. The recently proposed DISPEL pulse sequences suppress <sup>13</sup>C satellites extremely effectively, and this Technical Note demonstrates that combining DISPEL and presaturation results in exceptionally effective solvent suppression. An important element in the effectiveness is volume selection, which is inherent within the DISPEL sequence. Spectra acquired in protonated dimethlysulfoxide and tetrahydrofuran show that optimum results are obtained by modifying the phase cycle, cycling the pulse-field gradients, and using broadband <sup>13</sup>C inversion pulses to reduce the effects of radiofrequency offset and inhomogeneity.