Thiyl Radical-Based Charge Tagging Enables Sterol Quantitation via Mass Spectrometry AdhikariSarju XiaYu 2017 Inspired by the high reactivity and specificity of thiyl radicals toward alkenes, we have developed a new charge derivatization method to enable fast and quantitative analysis of sterols via electrospray ionization-mass spectrometry (ESI-MS). Thioglycolic acid (TGA), a commercially available compound, has been established as a highly efficient tagging reagent. Initiated from photochemical reactions, the thiyl radical derived from TGA abstracts an allylic hydrogen in the B ring of sterols, forming a radical intermediate which rapidly recombines with a second thiyl radical to produce the final tagged product. Because of the incorporation of a carboxylic acid group, TGA tagging not only improves the limit of detection (sub-nM) for sterols but also facilitates their quantitation via characteristic 44 Da neutral loss scan. This radical based derivatization is fast (1 min) and efficient (>90% yield) when conducted in a flow microreactor. The analytical utility of thiyl radical charge tagging method has been demonstrated by quantifying sterols from human plasma and vegetable oil.