%0 Generic %A Lysenko, Andrey B. %A Senchyk, Ganna A. %A Domasevitch, Konstantin V. %A Kobalz, Merten %A Krautscheid, Harald %A Cichos, Jakub %A Karbowiak, Miroslaw %A Neves, Patrícia %A Valente, Anabela A. %A Gonçalves, Isabel S. %D 2017 %T Triazolyl, Imidazolyl, and Carboxylic Acid Moieties in the Design of Molybdenum Trioxide Hybrids: Photophysical and Catalytic Behavior %U https://acs.figshare.com/articles/dataset/Triazolyl_Imidazolyl_and_Carboxylic_Acid_Moieties_in_the_Design_of_Molybdenum_Trioxide_Hybrids_Photophysical_and_Catalytic_Behavior/4810978 %R 10.1021/acs.inorgchem.6b02986.s002 %2 https://acs.figshare.com/ndownloader/files/7959490 %K ligand %K compound %K Molybdenum Trioxide Hybrids %K protonated imidazolium group %K acidic hydrothermal conditions %K trPhCO 2 H %K zigzag subtopological motif %K zwitterionic tetradentate forms %K μ 2 %K MoO 5 N %K imidazol -4-yl acid %K biomass-derived methyl oleate %K trans -β- methylstyrene %K tetradentate zwitterrionic trhis species %K Mo 8 O 25 %K trethbz %K Mo 4 O 12 %K MoO 4 N 2 %K Mo 2 O 6 %X Three organic ligands bearing 1,2,4-triazolyl donor moieties, (S)-4-(1-phenylpropyl)-1,2,4-triazole (trethbz), 4-(1,2,4-triazol-4-yl)­benzoic acid (trPhCO2H), and 3-(1H-imidazol-4-yl)-2-(1,2,4-triazol-4-yl)­propionic acid (trhis), were prepared to evaluate their coordination behavior in the development of molybdenum­(VI) oxide organic hybrids. Four compounds, [Mo2O6(trethbz)2]·H2O (1), [Mo4O12(trPhCO2H)2]·0.5H2O (2a), [Mo4O12(trPhCO2H)2]·H2O (2b), and [Mo8O25(trhis)2(trhisH)2]·2H2O (3), were synthesized and characterized. The monofunctional tr-ligand resulted in the formation of a zigzag chain [Mo2O6(trethbz)2] built up from cis-{MoO4N2} octahedra united through common μ2-O vertices. Employing the heterodonor ligand with tr/–CO2H functions afforded either layer or ribbon structures of corner- or edge-sharing {MoO5N} polyhedra (2a or 2b) stapled by tr-links in axial positions, whereas −CO2H groups remained uncoordinated. The presence of the im-heterocycle as an extra function in trhis facilitated formation of zwitterionic molecules with a protonated imidazolium group (imH+) and a negatively charged −CO2 group, whereas the tr-fragment was left neutral. Under the acidic hydrothermal conditions used, the organic ligand binds to molybdenum atoms either through [N–N]-tr or through both [N–N]-tr and μ2-CO2 units, which occur in protonated bidentate or zwitterionic tetradentate forms (trhisH+ and trhis, respectively). This leads to a new zigzag subtopological motif (3) of negatively charged polyoxomolybdate {Mo8O25}n2n consisting of corner- and edge-sharing cis-{MoO4N2} and {MoO6} octahedra, while the tetradentate zwitterrionic trhis species connect these chains into a 2D net. Electronic spectra of the compounds showed optical gaps consistent with semiconducting behavior. The compounds were investigated as epoxidation catalysts via the model reactions of achiral and prochiral olefins (cis-cyclooctene and trans-β-methylstyrene) with tert-butylhydroperoxide. The best-performing catalyst (1) was explored for the epoxidation of other olefins, including biomass-derived methyl oleate, methyl linoleate, and prochiral dl-limonene. %I ACS Publications