C<sub>3</sub>N<sub>4</sub> Nanosheet Modified Microwell Array with Enhanced Electrochemiluminescence for Total Analysis of Cholesterol at Single Cells XuJingjing JiangDepeng QinYanling XiaJuan JiangDechen ChenHong-Yuan 2017 Here, a g-C<sub>3</sub>N<sub>4</sub> nanosheet modified microwell array providing enhanced electrochemiluminescence (ECL) and better visible sensitivity was prepared to simultaneously analyze total (membrane and intracellular) cholesterol at single cells. The detection limit for ECL visualization of hydrogen peroxide at microwell array was improved to be 500 nM that guaranteed the detection of low concentration cholesterol at single cells in parallel. To achieve single cell cholesterol analysis, the individual cells cultured at the microwell array were exposed to cholesterol oxidase generating hydrogen peroxide for luminescence analysis of membrane cholesterol, and then treated with triton X-100, cholesterol esterase, and cholesterol oxidase to produce hydrogen peroxide from intracellular cholesterol for luminescence determination. The observation of the luminescence spots at microwells in these two steps confirmed the codetection of membrane and intracellular cholesterol at single cells. The inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT) resulted in less intracellular cholesterol storage (less luminescence) and more membrane cholesterol (more luminescence). The correlation of the luminescence intensity with the amount of cholesterol confirmed that our assay could simultaneously monitor membrane and intracellular cholesterol pools at different cellular states, which should offer more information for the study of cholesterol-related pathways at single cells.