%0 Generic %A Morello, Lara %A Yu, Peihua %A Carmichael, Christopher D. %A Patrick, Brian O. %A Fryzuk, Michael D. %D 2005 %T Formation of Phosphorus−Nitrogen Bonds by Reduction of a Titanium Phosphine Complex under Molecular Nitrogen %U https://acs.figshare.com/articles/dataset/Formation_of_Phosphorus_Nitrogen_Bonds_by_Reduction_of_a_Titanium_Phosphine_Complex_under_Molecular_Nitrogen/3267178 %R 10.1021/ja054467r.s003 %2 https://acs.figshare.com/ndownloader/files/5104900 %K Titanium Phosphine Complex %K THF %K NPN %K phosphinimide %K N 2 %K 15 N 2 results %K bond %K phosphine %K dinitrogen %K oxidation state metal complexes %K formation %K presence %K KC %K 15 N label %X The reduction of high oxidation state metal complexes in the presence of molecular nitrogen is one of the most common methods to synthesize a dinitrogen complex. However, the presence of strong reducing agents combined with the poor binding ability of N2 can lead to unanticipated outcomes. For example, the reduction of [NPN]ZrCl2(THF) (where NPN = PhP(CH2SiMe2NPh)2) with KC8 under N2 leads to the formation of the side-on bridged dinuclear dinitrogen complex ([NPN]Zr(THF))2(μ-η22-N2) with an N−N bond distance of 1.503(3) Å; however, reduction of the corresponding titanium precursor, [NPN]TiCl2, under N2 does not generate a dinitrogen complex, rather the bis(phosphinimide) derivative, ([N(PN)N]Ti)2, is isolated in which the added N2 is incorporated between the titanium and phosphine centers. Performing the reaction under 15N2 results in the 15N label being incorporated in the phosphinimide unit. A suggested mechanism for this process involves an initially formed dinitrogen complex being over reduced to generate a species with bridging nitrides that undergoes nucleophilic attack by the coordinated phosphine ligands and formation of the PN bond of the phosphinimide. %I ACS Publications