%0 Journal Article %A List, Manuela %A Puchinger, Helmut %A Gabriel, Herbert %A Monkowius, Uwe %A Schwarzinger, Clemens %D 2016 %T N‑Methylmelamines: Synthesis, Characterization, and Physical Properties %U https://acs.figshare.com/articles/journal_contribution/_i_N_i_Methylmelamines_Synthesis_Characterization_and_Physical_Properties/3257179 %R 10.1021/acs.joc.6b00355.s001 %2 https://acs.figshare.com/ndownloader/files/5092600 %K Methylmelamine %K polymerization processes %K melamine derivatives %K solubility %K GC %K compound %K dimethylamino groups %K mass spectrometry %K temperature ranges %K form hydrogen bonds %K novel materials %K polymerization reaction %K IR spectroscopy %K building blocks %K Physical Properties N %K reaction progress %K NMR %K reaction conditions %K melamine formaldehyde resins %K p K b increase %K methylamino groups %K synthesis routes %K polymer building blocks %K point shifts %K p K b values %X N-Methylmelamines have recently gained importance as valuable compounds for manufacturing modified melamine formaldehyde resins and other polymer building blocks. A great advantage of these polymers is the reduction of the carcinogenic formaldehyde. Selecting the polymerization processes (e.g., substance polymerization, polymerization in solution) and controlling the polymerization reaction and properties of these novel materials requires knowledge of the properties of the individual melamine derivatives used as new building blocks. All possible permutations of N-methylmelamines were prepared, and reaction progress was monitored by GC/MS. 2,4,6-Tris­(dimethylamino)-1,3,5-triazine was prepared to complete the series; this is, however, also a possible byproduct in various synthesis routes. The reaction conditions were optimized to obtain high yields of each derivative with the highest possible purity. The substances were characterized by NMR and IR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. In addition, physical properties, such as solubility, melting points, and pKb values, were determined. The number of amino-, methylamino-, and dimethylamino groups has a significant effect on these properties. In summary, we found that by increasing the number of amino- and methylamino groups, solubility and pKb increase. With increasing number of amino groups, the compounds tend to form hydrogen bonds, and thus, the melting point shifts to higher temperature ranges where they start to decompose. %I ACS Publications